Cross-Conjugated Chromophores: Synthesis of *iso***-Polydiacetylenes with Donor/Acceptor Substitution†**

LETTERS 2000 Vol. 2, No. 23 ³⁶⁰⁷-**³⁶¹⁰**

ORGANIC

Sorin C. Ciulei and Rik R. Tykwinski*

*Department of Chemistry, Uni*V*ersity of Alberta, Edmonton, Alberta, T6G 2G2 Canada*

rik.tykwinski@ualberta.ca

Received August 22, 2000

ABSTRACT

The iterative construction of cross-conjugated donor (D), acceptor (A), and donor−**acceptor (D**−**A) substituted** *iso***-polydiacetylene (iso-PDA) oligomers has been achieved utilizing palladium-catalyzed cross-coupling techniques. Structure**−**property relationships for these compounds have been analyzed for cross-conjugated** *π***-electronic communication as a result of contributions from donor, acceptor, or donor**−**acceptor functionalization.**

The delocalized and polarizable *π*-electron system present in conjugated organic molecules affords many of the physical characteristics necessary for the use of these materials in electronic and photonic applications.¹ A common motif in the study of conjugated systems involves a direct comparison of the electronic effects that result from sequential increases in conjugation length, the so-called oligomer approach.^{2,3} The properties of many systems have been further manipulated via attachment of $π$ -electron donor and/or acceptor groups.⁴ By using the above approaches, relationships between

stability, physical properties, and function have been described for linearly conjugated systems such as, among many others, stilbenes,^{5,6} azobenzenes,⁷ thiophenes,^{4a,b} and polyenes.^{4c,5}

Cross-conjugation in organic compounds represents an alternative mode of π -electron communication.⁸⁻¹⁰ To date, however, cross-conjugated systems have been largely ignored. Although there are examples of D-A crossconjugated molecules to be found in the literature, $¹¹$ there</sup> are very few examples of structurally related series of crossconjugated chromophores suitable for detailed analysis. As a consequence, fundament knowledge of the effects of D/A interactions in cross-conjugated molecules is quite limited.

In this paper, we report the stepwise, modular synthesis of a new class of cross-conjugated oligomers that have been

[†] Dedicated to Professor Dr. Henning Hopf on the occasion of his 60th birthday.

 (1) (a) Bosshard, C.; Sutter, K.; Prêtre, P.; Hulliger, J.; Flörsheimer, M.; Kaatz, P.; Günter, P. Organic Nonlinear Optical Materials; Gordon and Breach: Basel, 1995. (b) Nalwa, H. S.; Miyata, S. *Nonlinear Optics of Organic Molecules and Polymers*; CRC Press: Boca Raton, FL, 1997. (c) Skotheim, T. A.; Elsenbaumer, R. L.; Reynolds, J. R. *Handbook of Conducting Polymers*, 2nd ed.; Marcel Dekker: New York, 1997.

⁽²⁾ Wegner, G.; Müllen, K. *Electronic Materials-the Oligomer Approach*; Wiley-VCH: Weinheim, 1998.

⁽³⁾ Martin, R. E.; Diederich, F. *Angew. Chem., Int. Ed. Engl.* **1999**, *38*, ¹³⁵⁰-1377.

^{(4) (}a) Hutchings, M. G.; Ferguson, I.; McGeein, D. J.; Morley, J. O.; Zyss, J.; Ledoux, I. *J. Chem. Soc., Perkin Trans. 2* **¹⁹⁹⁵**, 171-176. (b) Steybe, F.; Effenberger, F.; Gubler, U.; Bosshard, C.; Günter, P. *Tetrahedron* **¹⁹⁹⁸**, *⁵⁴*, 8469-8480. (c) Marder, S. R.; Gorman, C. B.; Meyers, F.; Perry, J. W.; Bourhill, G.; Brédas, J.-L.; Pierce, B. M. *Science (Washington, D.C.)* **¹⁹⁹⁴**, *²⁶⁵*, 632-635. (d) Rojo, G.; de la Torre, G.; Garcia-Ruiz, J.; Ledoux, I.; Torres, T.; Zyss, J.; Agullo-Lopez, F. *Chem. Phys.* **¹⁹⁹⁹**, *²⁴⁵*, 27-34.

⁽⁵⁾ Alain, V.; Redoglia, S.; Blanchard-Desce, M.; Lebus, S.; Lukaszuk, K.; Wortmann, R.; Gubler, U.; Bosshard, C.; Gunter, P. *Chem. Phys.* **1999**, *²⁴⁵*, 51-71.

⁽⁶⁾ Cheng, L.-T.; Tam, W.; Marder, S. R.; Stiegman, A. E.; Rikken, G.; Spangler, C. W. *J. Phys. Chem.* **¹⁹⁹¹**, *⁹⁵*, 10643-10652.

⁽⁷⁾ Moylan, C. R.; Twieg, R. J.; Lee, V. Y.; Swanson, S. A.; Betterton, K. M.; Miller, R. D. J. Am. Chem. Soc. 1993, 115 , 12599–12600.

⁽⁸⁾ Hopf, H. Angew. Chem., Int. Ed. Engl. 1984, 23, 948-960. Hopf, (8) Hopf, H. *Angew. Chem., Int. Ed. Engl.* **¹⁹⁸⁴**, *²³*, 948-960. Hopf, H. *Classics in Hydrocarbon Chemistry*; Wiley-VCH: Weineim, 2000; Chapter 11.

⁽⁹⁾ Phelan, N. F.; Orchin, M. *J. Chem. Educ.* **¹⁹⁶⁸**, *⁴⁵*, 633-637.

⁽¹⁰⁾ Zhao, Y.; Tykwinski, R. R. *J. Am. Chem. Soc.* **¹⁹⁹⁹**, *¹²¹*, 458- 459.

(a) K₂CO₃, MeOH/wet THF (5:1), rt; (b) p-lodo-N, N-dimethylaniline, PdCl₂(PPh₃)₂, CuI, Et₃N, rt; (c) p-lodonitrobenzene, PdCl₂(PPh₃)₂, Cul, Et₃N, THF, it; (d) TBAF, wet THF, it; (e) 5, Pd(PPh₃)₄, Cul, Et₂NH, DMF, it.

selectively end-capped with the *p*-*N,N*-dimethylaminophenyl (donor) and/or *p*-nitrophenyl (acceptor) groups. Preliminary analysis of the electronic absorption characteristics indicates that D-A interactions are possible in the smallest of these chromophores (monomer **⁴**). Analogous D-A communication is, however, limited for the longer oligomers **9** and **13**, for which little change in electronic behavior is observed as a result of increased oligomer length.

The series of cross-conjugated chromophores was synthesized beginning from the differentially protected enediyne **1** (Scheme 1).¹⁰ Protodesilylation of **1** with K_2CO_3 in wet MeOH/THF (5:1) effected removal of the trimethylsilyl (TMS) moiety, while leaving the more robust triisopropylsilyl (TIPS) protecting group intact. This monodesilylated derivative was then carried on directly, following workup, to a Pd-catalyzed cross-coupling with *p*-iodo-*N,N*-dimethylaniline12 to afford the donor-substituted monomer **2** in 63%

yield. The analogous sequence of protodesilylation and crosscoupling of deprotected **1** with *p*-iodonitrobenzene gave acceptor-substituted monomer 3^{13} As the precursor to D-A
monomer 4, we chose to use donor-substituted 2 with the monomer **4**, we chose to use donor-substituted **2** with the expectation that the cross-coupling of **2** with electrondeficient 4-iodonitrobenzene would be easier than the coupling of **3** with the 4-iodo-*N,N*-dimethylaniline. Thus, treating a THF solution of **2** with a slight excess of tetrabutylammonium fluoride (TBAF) effected removal of the TIPS moiety, and cross-coupling with *p*-iodonitrobenzene provided D-A-substituted monomer **⁴** as an orange solid.

The assembly of longer D/A oligomers began with the common building block **1**. Following desilylation of **1**, crosscoupling with vinyl triflate 5^{14} utilizing Pd(PPh₃)₄/CuI and Et₂NH in DMF gave iso-PDA dimer 6.¹⁰ Selective removal of the TMS moiety of **6**, followed by cross-coupling of the relatively unstable intermediate with *p*-iodo-*N,N*-dimethylaniline or *p*-iodonitrobenzene gave **7** and **8**, respectively.15 TIPS removal from **7** with TBAF provided the terminal (11) (a) Tykwinski, R. R.; Schreiber, M.; Pe´rez Carlo´n, R.; Diederich,

F.; Gramlich, V. *Helv. Chim. Acta* **1996**, 79, 2249-2281. (b) Tykwinski, R. R.; Kamada, K.; Bykowski, D.; Ohta, K.; McDonald, R. *Adv. Mater.* R. R.; Kamada, K.; Bykowski, D.; Ohta, K.; McDonald, R. *Ad*V*. Mater.* **²⁰⁰⁰**, *¹²*, 133-137. (c) Nicoud, J.-F.; Serbutoviez, C.; Barrans, Y.; Chasseau, D.; Gautier-Luneau, I.; Ledoux, I.; Zyss, J. *Nonlinear Opt.* **1995**, *⁹*, 127-141. (d) Maertens, C.; Detrembleur, C.; Dubois, P.; Jerome, R.; Boutton, C.; Persoons, A.; Kogej, T.; Bre´das, J.-L. *Chem. Eur. J.* **1999**, *5*, 369-380. (e) Faust, R.; Göbelt, B.; Weber, C.; Krieger, C.; Gross, M.; Gisselbrecht, J.-P.; Boudon, C. *Eur. J. Org. Chem.* **¹⁹⁹⁹**, 205-214. (f) Song, Y.; Spencer, L.; Euler, W. B.; Rosen, W. *Org. Lett.* **¹⁹⁹⁹**, *¹*, 561- 564.

⁽¹²⁾ Dawson, D. J.; Frazier, J. D.; Brock, P. J.; Twieg, R. J. In *Polymers for High Technology*; American Chemical Society: Washington, DC, 1987; Vol. 346, pp 445-456.

⁽¹³⁾ The purity and structure of all new compounds were confirmed by ${}^{1}H$ and ${}^{13}C$ NMR, IR, MS, and either EA or HRMS. Synthetic and characterization details are provided as Supporting Information.

⁽¹⁴⁾ Stang, P. J.; Fisk, T. E. *Synthesis* **¹⁹⁷⁹**, 438-440.

⁽¹⁵⁾ **Typical Procedures. Preparation of 6, 7, and 9.** K_2CO_3 (30 mg, 0.22 mmol) was added to a solution of **1** (151 mg, 0.455 mmol) in wet THF (5 mL) and MeOH (15 mL) and reacted for 2 h. Et₂O and H₂O were added, and the organic phase was separated, washed with aqueous NH4Cl, dried (MgSO4), and reduced in vacuo to ca. 5 mL. The desilylated compound was added to a degassed solution of **5** (109 mg, 0.365 mmol) in DMF (10 mL). Pd(PPh₃)₄ (21 mg, 0.02 mmol) and Et₂NH (3 mL) were sequentially added. After the solution stirred for 5 min, CuI (10 mg, 0.06 mmol) was

alkyne that was then coupled with *p*-iodonitrobenzene to give the D-A dimer **⁹** as an orange solid.

To complete this series of cross-conjugated chromophores, dimer **6** was selectively protodesilylated and cross-coupled with vinyl triflate **5** to give the trimer **10** in 52% yield. Donor- and acceptor-substituted trimers **11** and **12** were synthesized in good yields by desilylation of **10** followed by coupling with *p*-iodo-*N,N*-dimethylaniline and *p*-iodonitrobenzene, respectively. Desilylation of donor **11** and cross-coupling with *^p*-iodonitrobenzene afforded D-A-**¹³** in 70% yield as an orange solid.

Thermally, donor/acceptor oligomers **4**, **9**, and **13** show reasonable stability despite their potentially reactive enyne framework. Melting points for all derivatives are found in Table 1, as are decomposition points for $D-A$ derivatives **4**, **9**, and 1**3** as determined by differential scanning calorimetry.

Empirically, the most obvious electronic changes are observed within the series of monomers **²**-**4**. As a result of donor-acceptor substitution, monomer **⁴** is clearly a more highly colored orange solid in comparison to donor (**2**) and acceptor (**3**) monomers, which are yellow solids. In the absence of cross-conjugated D-A interactions across the alkylidene spacer, one expects the spectrum of **4** to merely be a composite of its parts, i.e., **2** and **3**. The difference between the more colored **4**, versus **2** and **3**, is found in the lower energy region of the spectrum that extends out beyond 450 nm for **4** (Figure 1a). At this point, however, it is impossible to determine if this difference results from a redshifted absorption band for **4** or from "tailing" of a hidden shoulder absorbance. The UV-vis characteristics of **²**-**⁴** are similar to those observed for tetraethynylethene derivatives

with cross-conjugated D/A substitution.^{11a} Their behavior, however, dramatically contrasts that of similar linearly conjugated chromophores, which show significant bathochromic shifts upon $D-A$ substition.^{5,6,16}

Donor-acceptor chromophores **⁹** and **¹³** are also orange solids, whereas donor (**7**, **11)** and acceptor (**8**, **12)** derivatives

Figure 1. Electronic absorption spectra in CHCl₃ comparing (A) monomers **²**-**4**, (B) dimers **⁷**-**9**, and (C) trimers **¹¹**-**13**.

added, and stirring was continued under N_2 for 2 h. Workup and column chromatography (silica gel, hexane/CH₂Cl₂ 1:1) afforded 6 (118 mg, 63%). To a solution of **6** (152 mg, 0.370 mmol) in wet THF (3 mL) and MeOH (15 mL) was added K_2CO_3 (27 mg, 0.21 mmol), and the mixture reacted for 5 h. Following workup, the ethereal solution of the terminal acetylene was reduced in vacuo to ca. 5 mL and added to a degassed solution of p -iodo-*N,N*-dimethylaniline (106 mg, 0.482 mmol) in Et₃N (40 mL). PdCl₂-(PPh3)2 (27 mg, 0.04 mmol) and CuI (14 mg, 0.07 mmol) were added, and the mixture was stirred at room temperature under nitrogen for 14 h. Workup and column chromatography (silica gel, hexane/ CH_2Cl_2 5:2) afforded **7** (96) mg, 56%). To a solution of **7** (66.4 mg, 0.145 mmol) in wet THF (25 mL) at 0° C was added Bu₄NF (0.3 mL, 1.0 M in THF), and the mixture stirred for 15 min. Following workup, the ethereal solution of the terminal acetylene was reduced in vacuo to 5 mL and added to a mixture of Et_3N (20 mL) and THF (20 mL). The solution was degassed for 1.5 h, *p*-iodonitrobenzene (36.7 mg, 0.147 mmol), $PdCl_2(PPh_3)_2$ (4.7 mg, 0.007 mmol), and CuI (4 mg, 0.021 mmol) were added, and the mixture was stirred at room temperature under nitrogen for 6 h. Workup and column chromatography (silica gel, hexane/CH₂Cl₂ 1:1) afforded $9(33 \text{ mg}, 76%)$ as an orange solid, mp 154-156 °C: IR (cast) 2924, 2202, 1608, 1519, 1342 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.16 (*d*, *J* = 9.0 Hz, 2H), 7.57 (*d*, *J* = 9.0 Hz, 2H), 7.32 (*d*, *J* = 8.9 Hz, 2H), 6.61 (*d*, *J* = 8.9 Hz, 2H), 2.95 (s, 6 H), 2.12 (s, 7.32 (*d*, *J* = 8.9 Hz, 2H), 6.61 (*d*, *J* = 8.9 Hz, 2H), 2.95 (s, 6 H), 2.12 (s, 6H), 2.10 (s, 3H), 2.08 (m, 3H); ¹³C NMR (75.5 MHz, C₆D₆) *δ* 155.4, 151.9, 150.3, 147.1, 133.0, 131.9, 130.0, 123.4, 112.2, 111.0, 103.0, 102.3, 93.6, 92.2, 90.5, 90.0, 87.9, 85.1, 39.6, 22.8, 22.7 (3C); EI HRMS 422.19874 $(M^+, 100)$.

are pale and bright yellow solids, respectively. The UVvis spectra for D/A-substituted dimer **9** and trimer **13** (Figure 1b,c) are similar to those of monomer **4**, with the notable exception that there is no lower energy absorption for **9** and **¹³**. Thus, only monomer **⁴** exhibits a UV-vis observable influence from the incorporation donor and acceptor groups to the enyne framework.

In conclusion, we have developed an iterative and versatile procedure for assembling donor and/or acceptor-substituted cross-conjugated enyne oligomers. The electronic characteristics of this new series of oligomers have been studied by UV-vis spectroscopy and show that, whereas D/A

monomer **4** shows evidence of D/A electronic communication, such communication in the longer oligomers **9** and **13** appears to be considerably limited.

Acknowledgment. Financial support for this work has been provided by the University of Alberta, the Alberta Science, Research, and Technology Authority, and NSERC.

Supporting Information Available: Experimental procedures and characterization for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL006491+

⁽¹⁶⁾ Tykwinski, R. R.; Gubler, U.; Martin, R. E.; Diederich, F.; Bosshard, C.; Günter, P. *J. Phys. Chem. B* 1998, *102*, 4451-4465.